Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Language
Document Type
Year range
2.
Environ Res ; 211: 113047, 2022 08.
Article in English | MEDLINE | ID: covidwho-1906999

ABSTRACT

The clue behind the SARS-CoV-2 origin is still a matter of debate. Here, we report that SARS-CoV-2 has gained a novel spike protein S1-N-terminal domain (S1-NTD). In our CLuster ANalysis of Sequences (CLANS) analysis, SARS-CoV/SARS-CoV-2 S1-NTDs displayed a close relationship with OC43 and HKU1. However, in the complete and S1-NTD-free spike protein, SARS-CoV/SARS-CoV-2 revealed closeness with MERS-CoV. Further, we have divided the S1-NTD of SARS-CoV-2 related viruses into three distinct types (Type-I to III S1-NTD) and the S1-NTD of viruses associated with SARS-CoVs into another three classes (Type-A to C S1-NTD) using CLANS and phylogenetic analyses. In particular, the results of our study indicate that SARS-CoV-2, RaTG13, and BANAL-20-52 viruses carry Type-I-S1-NTD and other SARS-CoV-2-related-bat viruses have Type-II and III. In addition, it was revealed that the Pangolin-GX and Pangolin-Guangdong lineages inherited Type-I-like and Type-II-like S1-NTD, respectively. Then our CLANS study shows the potential for evolution of Type-I and Type-III S1-NTD from SARS-CoV-related viruses Type-A and Type-B S1-NTDs, respectively. Furthermore, our analysis clarifies the possibility that Type-II S1-NTDs may have evolved from Type-A-S1-NTD of SARS-CoV-related viruses through Type-I S1-NTDs. We also observed that BANAL-20-103, BANAL-20-236, and Pangolin-Guangdong-lineage viruses containing Type-II-like S1-NTD are very close to SARS-CoV-2 in spike genetic areas other than S1-NTD. Possibly, it suggests that the common ancestor spike gene of SARS-CoV-2/RaTG13/BANAL-20-52-like virus may have evolved by recombining the Pangolin-Guangdong/BANAL-20-103/BANAL-20-236-like spike gene to Pangolin-GX-like Type-I-like-S1-NTD in the unsampled bat or undiscovered intermediate host or possibly pangolin. These may then have evolved into SARS-CoV-2, RaTG13, and BANAL-20-52 virus spike genes by host jump mediated evolution. The potential function of the novel Type-I-S1-NTD and other types of S1-NTDs needs to be studied further to understand better its importance in the ongoing COVID-19 outbreak and for future pandemic preparedness.


Subject(s)
SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Animals , COVID-19 , Humans , Pangolins , Phylogeny , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
3.
Hum Vaccin Immunother ; 18(5): 2065824, 2022 11 30.
Article in English | MEDLINE | ID: covidwho-1860753

ABSTRACT

The emergence of different variants of SARS-CoV-2, including the Omicron (B.1.1.529) variant in November 2021, has resulted in a continuous major health concern at a global scale. Presently, the Omicron variant has spread very rapidly worldwide within a short time period. As the most mutated variant of SARS-CoV-2, Omicron has instilled serious uncertainties on the effectiveness of humoral adaptive immunity generated by COVID-19 vaccination or an active viral infection as well as the protection provided by antibody-based immunotherapies. Amidst such high public health concerns, the need to carry out booster vaccination has been emphasized. Current evidence reveals the importance of incorporating booster vaccination using several vaccine platforms, such as viral vector- and mRNA-based vaccines, as well as other platforms that are under explorative investigations. Further research is being conducted to assess the effectiveness and durability of protection provided by booster COVID-19 vaccination against Omicron and other SARS-CoV-2 variants.


Subject(s)
COVID-19 , Viral Vaccines , COVID-19/prevention & control , COVID-19 Vaccines , Humans , SARS-CoV-2/genetics
4.
Environ Res ; 209: 112816, 2022 06.
Article in English | MEDLINE | ID: covidwho-1654412

ABSTRACT

Since the appearance in the late of December 2019, SARS-CoV-2 is rapidly evolving and mutating continuously, giving rise to various variants with variable degrees of infectivity and lethality. The virus that initially appeared in China later mutated several times, wreaking havoc and claiming many lives worldwide amid the ongoing COVID-19 pandemic. After Alpha, Beta, Gamma, and Delta variants, the most recently emerged variant of concern (VOC) is the Omicron (B.1.1.529) that has evolved due to the accumulation of high numbers of mutations especially in the spike protein, raising concerns for its ability to evade from pre-existing immunity acquired through vaccination or natural infection as well as overpowering antibodies-based therapies. Several theories are on the surface to explain how the Omicron has gathered such a high number of mutations within less time. Few of them are higher mutation rates within a subgroup of population and then its introduction to a larger population, long term persistence and evolution of the virus in immune-compromised patients, and epizootic infection in animals from humans, where under different immune pressures the virus mutated and then got reintroduced to humans. Multifaceted approach including rapid diagnosis, genome analysis of emerging variants, ramping up of vaccination drives and receiving booster doses, efficacy testing of vaccines and immunotherapies against newly emerged variants, updating the available vaccines, designing of multivalent vaccines able to generate hybrid immunity, up-gradation of medical facilities and strict implementation of adequate prevention and control measures need to be given high priority to handle the on-going SARS-CoV-2 pandemic successfully.


Subject(s)
COVID-19 , Animals , COVID-19/epidemiology , COVID-19/prevention & control , Global Health , Humans , Pandemics , SARS-CoV-2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL